
INTRODUCTION

Purpose of this document

Update Log

How to Read this Document

Features and Use Cases

GETTING STARTED

How to Connect

How to make API request

Data Type Overview

FAQ

API OPERATIONS

Payments

Plans

API SCHEMA

Schema Definitions

REFERENCE

Lifecycle of Cryptographic Keys

Download Swagger

DISCLAIMER

Disclaimer

#Production
https://cmb-api.hsbc.com.hk/glcm-mobilecoll-mcjp-ea-merchantservices-prod-proxy/v1

#Sandbox
https://devclustercmb.api.p2g.netd2.hsbc.com.hk/glcm-mobilecoll-mcjp-ea-merchantservices-cert-
proxy/v1

This document provide the audience with OpenAPI specification for describing REST APIs of HSBC Omni Collect
in Japan.

The target audience of this document is the Developer, Business Analyst and other related Project Team Member
(who has the basic technical know-how of Web technology such as REST or JSON) of HSBC’s client (i.e. the
Merchant)

[Mar 19, 2021] v1.2 Updated API Use Case of Content Section Credit Card
[Jan 25, 2021] v1.1 Content Section Revised
[Now 31, 2020] v1.0 Initial Version

API Specification of HSBC Omni Collect in Japan

Purpose of this document

Update Log

This document walks through the API usage and lists the key idea by section like API Usage Flow, API Connectivity
and API Operation. There is also a FAQ and list of Schema Definitions used by API operation.

HSBC Omni Collect offers a wide range of online payment solutions which allows online merchants to process
Credit / Debit Card and Code Payments. The payment platform supports implementations with websites or mobile
applications.

Credit Card / Debit Card Payments

HSBC Omni Collect for Japan currently supports the following card companies:

List of supported Card Brands / Companies

AEON NC日商連 ポケットカード

American Express SAISON 三井住友

APLUS UC 三菱UFJニコス (DC)

Cedyna (CF) UCS 三菱UFJニコス (NICOS)

Cedyna (OMC) Visa 三菱UFJニコス (UFJ)

DINERS エポス 京王パスポート

JACCS オリコ 日専連

JCB すみしんLIFE 東急TOP

LIFE トヨタファイナンス 楽天カード

Mastercard

Furthermore, online credit card transaction in Japan is usually required additional security from issuer Bank, called
3D Secure. This process will ask the genuine credit card holder to enter Internet PIN or One Time PIN(OTP) that
usually sent to Credit Card Holder mobile phone.

How to Read this Document

Features and Use Cases

API Use Case

1. Customer conducts checkout process in merchant's website.
2. Merchant submits Payment Page Redirect API request to HSBC.
3. HSBC returns JSON response which embeds the access link (in HTML Form Submit format) of the Secured

Online Payment Page in the field redirectLink . More details will be covered in here.
4. Merchant submits the redirect link using HTML Form POST. It will redirect Merchant website to the Secure

Online Payment Page.
5. Customer can verify the payment type (one-time, installment or a revolving payment) on the payment page.

Merchant can associate an installment or revolving plan on step #2. See more details in here.
6. Customer input Credit Card details in the Payment Page and then further redirected to 3D Secure (3DS) Page

for input One-Time password.
7. Payment page will connect securely to bank and backend systems to process the payment.
8. HSBC will receive payment status once it is updated from backend system.
9. Redirect back to merchant website once the payment process is completed in the Payment Gateway.

10. Merchant is recommended to submit a Payment Status Enquiry API right after the Payment Page is redirected
back to the Merchant's website.

11. HSBC will return the latest payment status while Merchant can utilize this information to construct their Order
Confirmation Page.

12. HSBC will then trigger Callback Status Notification and send payment status back to Merchant asynchronously.

13. Merchant responds the API to acknowledge. Fail to return a proper response will trigger Notification resend
mechanism.

NOTICE:
Merchant can define this redirect back URL in request fields redirectUrl in Payment Page Redirect API.

!

NOTICE:
This server-to-server Notification will be sent out for a successful payment or refund case only. Merchant
can define their URL endpoint in request field notificationUrl in Payment Page Redirect API.

!

Installment and Revolving Payments
To allow customer to submit an installment or revolving payment request, merchant can either create a new Plan or
reuse an existing plan and put the corresponding plan_id into Payment Page Redirect API and follow the same
API flow as we mentioned in the previous section.

Code Payment
To see the list of Code Brands / Companies currently supported by HSBC Omni Collect for Japan, please refer to
the API field type of API Schema code_Obj.

API Use Case

NOTICE:
Full refund is supported for both Installment and Revolving payment. Moreover, a refund request for a
revolving also means to terminate the subscription.

Callback Status Notification will be sent for the first revolving payment submission only.

!

1. Customer presents QR code to Merchant.
2. Merchant reads QR code with any reading device such as POS terminal.
3. Merchant decodes the QR code image into a string and submit Code Payment request to HSBC
4. HSBC relays request to Code Payment Gateway.
5. Code Payment Gateway processes validation and changes payment status to paying if success
6. HSBC relays response from Code Payment Gateway.
7. API returns corresponding payment status.
8. Code Payment Gateway sends confirmation request to customer, then customer confirms payment on their

Mobile App.
9. Code Payment Gateway processes payment and changes status to paid if success

10. HSBC relays response from Code Payment Gateway.
11. HSBC pushes payment result to Merchant.
12. Merchant responds the API to acknowledge. Fail to return a proper response will trigger Notification resend

mechanism.

Check Status Feature
Omni Collect provide feature for merchant to check status of every payment transaction. To implement Check
Status, please see the Status Enquiry API.

Cancel & Refund
Merchant can request Refund API to refund a settled transaction (Card Company recorded). HSBC currently
accepts Full Refund only.

Order Confirmation

Regarding to the aforementioned API usage flow, the last step is to redirect the Payment Page back to the
Merchant website. Merchant can build a dynamic Order Confirmation Page with payment status (e.g. successful or
failed) where the details can be retrieved from the immediate Payment Status Enquiry API or the asynchronous
Callback Status Notification.

API Connectivity refers to all measures and their components that establishes connection between HSBC, the API
Provider and Merchant, the API Consumer.

Definition Components

API
Authentication

HTTP BASIC Authentication
Username
Password

Locate API Gateway Policy of the corresponding
user

Client ID
Client Secret

User
Identification

A Merchant Profile
Merchant ID
Merchant Profile

How to Connect

Connection
Security

HTTPS Connection (TLS 1.2) and Network
Whitelisting

SSL Certificate
Network Whitelist

Message
Security

Digital Signing and Data Encryption

A pair of Private Key & Public Key Certificate (PKI
Model)
JWS Key ID
JWE Key ID

API Authentication

Username & Password

Purpose All APIs are authorized using Basic Authorization

Components Username Password

Where to get it? Delivered by HSBC via secure email during onboarding procedure

Implementation
In HTTP header:
Authorization: Basic [Base64-encoded Credential]

Client ID & Client Secret

Purpose API Gateway locates the corresponding policy of the specific API consumer

Components Client ID Client Secret

Where to get it? Delivered by HSBC via secure email during onboarding procedure

Implementation
In HTTP header:
x-hsbc-client-id: [Client ID]

In HTTP header:
x-hsbc-client-secret: [Client Secret]

User Identification

Merchant Profile & Merchant ID

Merchant Profile contains all necessary information from a Merchant ID is used for Merchant

Purpose Merchant in order to enable payment service. identification in each API call.

Components Merchant Profile Merchant ID

Where to get
it?

Set up by HSBC team after collect information from
Merchant

Delivered by HSBC via secure email
during onboarding procedure

Implementation nil
In HTTP header:
x-hsbc-msg-encrypt-id: [Merchant

ID]+[JWS ID]+[JWE ID]

Connection Security

SSL Certificate & Network Whitelist

Purpose
Request HSBC API over HTTPS
connection (TLS 1.2)

Accept Callback API request over HTTPS connection (TLS 1.2)

Components
Public SSL Certificate issued by
HSBC

Merchant's web server
or domain whose
HTTPS connection is
enabled

Network Whitelist on HSBC
system

Where to get
it?

Downloaded automatically by
Browsers or API Tools, if any
problem found, please contact
HSBC

nil nil

Implementation nil nil

Merchant's domain URL will
be configured in HSBC's
network whitelist by HSBC
team

Message Security - Data Encryption and Signing
On top of the Transport Layer Security, HSBC adopts additional security on the message being passed through

the connection session. Data Encryption actually serves as a locked briefcase containing the data (the API
message) within the HTTPS "tunnel". In other word, the communication has double protection.

HSBC uses JWS to sign message payload and JWE to encrypt the signed message while these two objects are
created by using a pair of Private Key & Public Key Certificate (PKI Model).

Private Key & Public Key Certificate (PKI Model)

Purpose
Digitally sign a API request message
Decrypt a API response message

Encrypt the signed API request
message
Verify a signed API response
message

Components Private Key issued by Merchant
Public Key Certificate issued by
HSBC

Where to get
it?

Created by any Public Key Infrastructure (PKI) toolkits, such
as Keytool™ and OpenSSL™. Technical detail is in here

Exchanged with HSBC with the
Public Key Certificate issued by
Merchant

Implementation Please see the technical detail in here

keyID of JWS™ & JWE™

Purpose

The unique identifier to bind Merchant's Private
Key in order to create a JWS object - a signed
Message Payload

The unique identifier to bind HSBC's Public Key
Certificate in order to create a JWE object - an
encrypted JWS object

Components keyID of JWS™ keyID of JWE™

DO YOU KNOW?
Javascript Object Signing and Encryption (JOSE™), is a framework intended to provide methods to securely
transfer information between parties. The JOSE framework provides a collection of specifications, including
JSON Web Signature (JWS™) and JSON Web Encryption (JWE™), to serve this purpose.

!

NOTICE:
Technically, X.509 certificate can be served as a SSL Certificate as well as a Public Key Certificate for Data
Encryption. However, HSBC recommends Merchant to use a different X.509 Certificate for Data Encryption for
segregation of certificate usage.

Moreover, the Public Key Certificate does not have to be CA-signed. However, if Merchant decides to enhance
security, a CA-Signed Certificate is always welcome.

!

Where to get
it?

Mutual agreed between Merchant and HSBC Mutual agreed between Merchant and HSBC

Implementation

Define in program coding, see demo in here, and;
In HTTP header:
x-hsbc-msg-encrypt-id: [Merchant ID]+[JWS ID]+[JWE ID]

How to Sign and Encrypt Outgoing Message
Every message sent to HSBC must be signed and encrypted. From the point of view of a Merchant, an Outgoing
Message means:

the Request Message of a Normal API, or
the Respond Message of a Callback API.

To help you understand how to construct a Signed and Encrypted Message, let's take the Java program below as
an example. Do not worry if you are not familiar with Java, the idea is to let you know the steps and all needed
components:

private JWSObject signMessage(String messagePayload, KeyStore ks, String keyAlias, String keyPw)
 throws UnrecoverableKeyException, KeyStoreException, NoSuchAlgorithmException, JOSEException {
#1 Payload payload = new Payload(messagePayload);

#2 JWSHeader header = new JWSHeader.Builder(JWSAlgorithm.RS256).keyID("0001").build();
#3 JWSObject jwsObject = new JWSObject(header, payload);

#4 PrivateKey privateKey = (PrivateKey) ks.getKey(keyAlias, keyPw.toCharArray());
 JWSSigner signer = new RSASSASigner(privateKey);
#5 jwsObject.sign(signer);

 return jwsObject;
}

1. Prepare your Message Payload, that is, the plain json request message
2. Create JWS Header using RS256 signing algorithm and JWS keyID, in this case, 0001

NOTICE:
For security purposes, HSBC's Public Key Certificate and its associated keyID will be renewed every
year and a Certificate Renewal process will be triggered. More detail is covered in section Key Renewal

!

NOTICE: These Java codes are for demonstration only and it's not plug and play.!

3. Create JWS Object by combining JWS Header and Message Payload
4. Retrieve your Private Key as the signer
5. Create Signed JWS Object by signing it with the Private Key

Next, you are going to Encrypt the Signed JWS Object:

private JWEObject getEncryptedJWEObject(JWSObject jwsObject, RSAPublicKey key)
 throws JOSEException {
#1 Payload jwepayload = new Payload(jwsObject.serialize());

#2 JWEHeader jweheader = new JWEHeader.Builder(JWEAlgorithm.RSA_OAEP_256, EncryptionMethod.A128GCM).keyID(
#3 JWEObject jweObject = new JWEObject(jweheader, jwepayload);

#4 JWEEncrypter encrypter = new RSAEncrypter(key);
#5 jweObject.encrypt(encrypter);

 return jweObject;
}

1. Prepare your JWE Payload, that is, the Signed JWS Object

2. Create JWE Header. The algorithm used to encrypt the message body is A128GCM while the algorithm used to
encrypt the encryption key is RSA_OAEP_256 . JWE keyID is 0002 .

3. Create JWE Object by combining JWE Header and JWE Payload
4. Retrieve HSBC's Public Key as the encrypter
5. Create Encrypted JWE Object by encrypted it with HSBC's Public Key

Yes, you are now ready to put the Encrypted JWE Object as the message body (you may need to first serialize it
into String format, depends on your program code design) of any API call.

How to Decrypt Message and Verify Signature of an Incoming
Message

Every message sent from HSBC must be decrypted and verified. From the point of view of a Merchant, an
Incoming Message means:

the Respond Message of a Normal API, or
the Request Message of a Callback API.

Let's look into the following example to see how you decrypt a response message from HSBC:

private String decryptMessage(String respMsgPayload, KeyStoreFactory keyStore)
 throws KeyStoreException, NoSuchAlgorithmException, CertificateException, IOException,
 java.text.ParseException, UnrecoverableKeyException, JOSEException {
#1 JWEObject jweObject = JWEObject.parse(respMsgPayload);

#2 PrivateKey privateKey = (PrivateKey) keyStore.getPrivateKey("merchant_private_key_alias");

 JWEDecrypter decrypter = new RSADecrypter(privateKey);
#3 jweObject.decrypt(decrypter);

#4 String signedMessage = jweObject.getPayload().toString();
 return signedMessage;
}

1. Create Encrypted JWE Object by parsing the encrypted response message payload
2. Retrieve Private Key as the decrypter
3. Decrypt the JWE Object using your Private Key
4. Get the Signed Message from the decrypted JWE Object

You are now able to extract the plain json message. Yet, before that, you must verify the signature to guarantee
data integrity.

private String verifySignature(String signedMessage, KeyStore ks, String keyAlias)
 throws KeyStoreException, JOSEException, ParseException {
#1 JWSObject jwsObject = JWSObject.parse(signedMessage);

 Certificate certificate = ks.getCertificate(keyAlias);
#2 JWSVerifier verifier = new RSASSAVerifier((RSAPublicKey) certificate.getPublicKey());

#3 if (!jwsObject.verify(verifier)) {
 throw new ValidationException("Invalid Signature");
 }
#4 return jwsObject.getPayload().toString();
}

1. Create JWS Object by parsing the Signed Message

2. Retrieve HSBC’s Public Key as the verifier
3. Verify the signed JWS Object. Invoke error handling if invalid signature found (depends on your code design)
4. Get the plain json message for further actions

Summary

Components \
Steps

Message Signing Message Encryption
Message
Decryption

Verify Signature

JWS Object
Signing Algorithm:
RS256

JWE Object

JWE Algorithm:
RSA_OAEP_256

Encryption Method: A128GCM

KeyID 0002 0002

Merchant's Private
Key

Used as Signer
Used as
Decrypter

HSBC's Public Key Used as Encrypter
Used as
Verifier

API request can be submitted without Message Encryption, in case you want to:

understand the basic API Call quick;
test API connectivity before spending substantial development effort on Message Encryption.

However, data encryption is actually a required data security imposed by HSBC standard, Merchant has to invoke
the encryption logic before moving to Production and fully tested during testing phase.

Make Your API Request with Plain Messages

Submit API request using cURL™ as an example
cURL™ is a simple command line tool that enables you to make any HTTP request. Merchant can choose any
other GUI tool such as Postman™ and SoapUI™.

Step 1. Run this command in your system platform:

#1 curl -X POST "https://devclustercmb.api.p2g.netd2.hsbc.com.hk/glcm-mobilecoll-mcjp-ea-merchantservices-cert-proxy/v1/
#2 -H "message_encrypt: false"
#3 -H "Authorization: Basic eW91cl91c2VybmFtZTp5b3VyX3Bhc3N3b3Jk"
#4 -H "x-HSBC-client-id: 8b915a4f5b5047f091f210e2232b5ced"
#5 -H "x-HSBC-client-secret: 1bb456a541dc416dB6016B5F9583C606"
#6 -H "x-HSBC-msg-encrypt-id: 42298549900001+0001+0002"
#7 -H "Content-Type: application/json"
#8 -d "{ \"txnRef\": \"PAY-QJZV956664\", \"merId\": \"42298549900001\"}"

How to Make API Request

NOTICE:
Skipping message encryption is the flexibility provided in Sandbox Environment for testing purpose.

!

1. Submit POST request to the API URL endpoint
2. Put the secret header message_encrypt: false to indicate this API request is without message encryption.

This header is only applicable in Sandbox environment.
3. Put the Basic Authorization in HTTP header Authorization

4. Put Client ID in HTTP header x-HSBC-client-id

5. Put Client Secret in HTTP header x-HSBC-client-secret

6. Put Merchant ID, JWS ID and JWE ID in HTTP header x-HSBC-msg-encrypt-id respectively
7. Set Content-Type to JSON format
8. Plain json message payload

Step 2. Receive response message in plain json format.

Making API Request with Message Encryption

Step 1. Run this cURL™ command in your system platform:

#1 curl -X POST "https://devclustercmb.api.p2g.netd2.hsbc.com.hk/glcm-mobilecoll-mcjp-ea-merchantservices-cert-proxy/v1/
#2 -H "Authorization: Basic eW91cl91c2VybmFtZTp5b3VyX3Bhc3N3b3Jk"
#3 -H "x-HSBC-client-id: 8b915a4f5b5047f091f210e2232b5ced"
#4 -H "x-HSBC-client-secret: 1bb456a541dc416dB6016B5F9583C606"
#5 -H "x-HSBC-msg-encrypt-id: 42298549900001+0001+0002"
#6 -H "Content-Type: application/json"
#7 -d "eyJraWQiOiIwMDAxIiwiZW5jIjoiQTEyOEdDTSIsImFsZyI6IlJTQS1PQUVQLTI1NiJ9.W4nobHoVXUMOXGM5I-WGPZt8sj-hsd_sRujMHFbv80M72K4l..."

1. Submit POST request to the API URL endpoint
2. Put the Basic Authorization in HTTP header Authorization

3. Put Client ID in HTTP header x-HSBC-client-id

4. Put Client Secret in HTTP header x-HSBC-client-secret

5. Put Merchant ID, JWS ID and JWE ID in HTTP header x-HSBC-msg-encrypt-id respectively
6. Set Content-Type to JSON format
7. Encrypted Message Payload.

Step 2. For a successful request (HTTP Status Code 200), an encrypted response message will be returned,
otherwise, a plain json with failure message will be returned.

NOTICE:
Data Encryption invokes compulsory prerequisites, JOSE library and program coding, please make sure the
section Message Security has been gone through thoroughly.

!

Data Type Control:

Data
Type

Allowed
Characters

Definition & Important Notice

String
(For
general
field)

Alphanumeric
and Symbols

General field means field which is NOT a critical field. HSBC system will execute characters
checking upon all string fields we received in order to tackle security vulnerability, such as Cross-
site Scripting. Yet, we recommend you to try use Alphanumeric only for most cases.

String
(For
critical
field)

0-9 a-z

A-Z - _

.

Critical field is used to be either a key or search criteria in HSBC backend system and hence tight
restriction is applied to the allowed characters.

Moreover, the starting and ending space of the string value will be trimmed before stored in HSBC
system. For example, string " example 12 34 " will be trimmed to "example 12 34" .

List of Critical Fields:
txnRef

merId

product_id

Integer 0-9 Instead of having Max Length check for String, integer range will be checked, e.g. 0 ≤ x ≤ 9999

Field Mandatory Control:

Field
Mandatory
Type

Definition & Important Notice

Mandatory
Annotated with required tag in field definition section.

Field & value must be present in the request with valid JSON format.

Optional

Annotated with optional tag in field definition section.

If you don't want to pass fields that are optional, your handler should not pass neither empty strings
{"example":""} nor blank value {"example":" "} .

Conditional

Annotated with conditional tag in field definition section.

Required under a specific condition whose logic is always provided in the field definition if it is a Conditional
Field.

Time Zone Control:

Data Type Overview

Aspect Format Definition & Important Notice

In
Request
Message

yyyy-MM-

dd'T'HH:mm:ssZ

Time zone is expected to be GMT+10 (Australia local time) or GMT+8 (Singapore local time).
Merchant is required to perform any necessary time zone conversion before submit request if
needed.

In
Response
Message

yyyy-MM-

dd'T'HH:mm:ss

±hh:mm

Timezone returned in api_gw object is generated from HSBC API Gateway which located in
Cloud and hence is calculated in GMT+0 .

On the other hand, time field in response object will be returned together with timezone
information. For more details, please read each field definition carefully.

SSL Connection Questions

Where can I find HSBC SSL server certificates?
Merchant developer is able to export SSL server certificates that has been installed in your browser. By doing this,
visit the domain of the corresponding API endpoint in your browser. For example, to get the SSL certificate of
sandbox environment, use domain name https://devclustercmb.api.p2g.netd2.hsbc.com.hk/

However, in production, we will provide a certificate and require TLS 1.2 implementation.

Message Encryption Questions

What certificates will I need to work for Message Encryption in HSBC's sandbox
and production environments?

A self-sign certificate is acceptable. However, If Merchant decides to enhance security, a CA-Signed Certificate is
always welcome.

Javascript Object Signing and Encryption (JOSE) Framework

FAQ

https://devclustercmb.api.p2g.netd2.hsbc.com.hk/

Questions

Where can I get more information about JOSE Framework?

If you want to fully understand the framework, you can read here for more details.

Please note the url does not belong to HSBC, use it on your own discretion. By clicking the url or website, it means you accept this

terms and conditions.

Where can I download JOSE libraries for development?
For your reference, you may find the following JOSE libraries of different programming languages.

Ruby
Python
PHP
Java
Node
.NET

Please note those urls or websites do not belong to HSBC, use it on your own discretion. By clicking those urls or websites, it means

you accept this terms and conditions.

Contains resource collections for Credit card and Code payments, enquiry, notification, etc.

Payments

DESCRIPTION

This API returns a redirect link of the Secured Online Payment Page that aims to redirect Merchant's browser to
the payment page. Customer then input all other necessary information (such as Credit Card details) in that page
to complete the payment.

How to do Redirection

Payment Page Redirect for Credit Card Payment
Payments

POST /payment/pageRedirect

http://jose.readthedocs.io/en/latest/
https://github.com/potatosalad/ruby-jose
https://github.com/mpdavis/python-jose
https://github.com/Spomky-Labs/jose
https://github.com/gesellix/Nimbus-JOSE-JWT
https://github.com/cisco/node-jose
https://github.com/dvsekhvalnov/jose-jwt

Merchant is required to use HTTP Form POST to submit the redirect link which is presented in a HTML Form

format. Below is a sample, please be noticed any data modification inside the form is not allowed. Otherwise, the
data integrity checking will block the connection from accessing the online payment page.

<script language="javascript">window.onload=function(){document.pay_form.submit();}</script>
<form id="pay_form" name="pay_form" action="https://www.e-scott.jp/euser/snp/SSNPxxxx.do" method="post">
<input name="MerchantId" type="hidden" id="MerchantId" value="000xxxxx" />
<input name="EncryptValue" type="hidden" id="EncryptValue" value="dcbQvu8ged6udFbAzo1xIGat6GmWYOoslsUy..."
</form>

Authorization
required
in header

BASIC [Base64-encoded Credential]

x-hsbc-client-id
required
in header

[Client ID]

x-hsbc-client-secret
required
in header

[Client Secret]

x-hsbc-msg-encrypt-id
required
in header

[Merchant ID]+[JWS ID]+[JWE ID]

Content-Type
required
in header

application/json

payLinkReqtModel Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

REQUEST PARAMETERS

REQUEST BODY

{
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",

 "plan_id": "PLN-123e4567-e89b-12d3-a456-426614174000"
 },
 "system": {
 "redirectUrl": "https://www.example.com/redirect",
 "notificationUrl": "https://www.example.com/notification"
 },
 "payment": {
 "country": "JP",
 "amount": 10000,
 "description": "Payment Order of #PAY-QJZV956664"
 },
 "items": [
 {
 "product_name": "Product Item 1",
 "product_id": "A",
 "unitAmt": 9000,
 "unit": 1,
 "vat": 1000,
 "subAmt": 10000
 }
],
 "udfs": [
 {
 "definition": "Product Image in Base64 format",
 "value": "iVBORw0KGgoAAAANSUhEU..."
 },
 {
 "definition": "Special Notes from Customer",
 "value": "Customer is a non-smoker"
 }
]
}

200 OK
payLinkRespModel

Successful operation.

Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

400 Bad Request
commonRespObj

Missing or invalid Parameters.

403 Forbidden Authorization credentials are missing or invalid.

404 Not Found Empty resource/resource not found.

500 Internal Server Error The request failed due to an internal error.

RESPONSES

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "transaction": {
 "txnRef": "PAY-QJZV956664"
 },
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful",
 "sysDatetime": "2020-01-01T13:00:00+09:00",
 "redirectLink": "<Encoded_Redirect_Submit_Form>"
 }
 }
}

{
 "messageId": "89817674-daOO-4883",
 "returnCode": "400",
 "returnReason": "Error Message Here",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
}

DESCRIPTION

Unlike making credit card payment via an Online Payment Page, this endpoint makes a direct Code payment
request.

REQUEST PARAMETERS

Code Payment
Payments

POST /payment/code

Authorization
required
in header

BASIC [Base64-encoded Credential]

x-hsbc-client-id
required
in header

[Client ID]

x-hsbc-client-secret
required
in header

[Client Secret]

x-hsbc-msg-encrypt-id
required
in header

[Merchant ID]+[JWS ID]+[JWE ID]

Content-Type
required
in header

application/json

codeReqtModel Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

REQUEST BODY

{
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001"
 },
 "system": {
 "notificationUrl": "https://www.example.com/notification",
 "qr_str": "<QR_Code_String>"
 },
 "payment": {
 "country": "JP",
 "amount": 10000,
 "description": "Payment Order of #PAY-QJZV956664"
 },
 "items": [
 {
 "product_name": "Product Item 1",
 "product_id": "A",
 "unitAmt": 9000,
 "unit": 1,
 "vat": 1000,
 "subAmt": 10000
 }
],

 "udfs": [
 {
 "definition": "Product Image in Base64 format",
 "value": "iVBORw0KGgoAAAANSUhEU..."
 },
 {
 "definition": "Special Notes from Customer",
 "value": "Customer is a non-smoker"
 }
]
}

200 OK
codeRespModel

Successful operation.

Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

400 Bad Request
commonRespObj

Missing or invalid Parameters.

403 Forbidden Authorization credentials are missing or invalid.

404 Not Found Empty resource/resource not found.

500 Internal Server Error The request failed due to an internal error.

RESPONSES

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful"
 },
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "process_id": "ee5b902a153f104281f4b81c5ce8216b",

 "process_pass": "f1973eef815a6e1541b356ab06e2478c",
 "error_code": "BARCODE_ERROR",
 "error_msg": "正しいバーコードをスキャンしてください。"
 },
 "payment": {
 "id": "000014640567",
 "resp_code": "OK",
 "amount": 650000,
 "description": "Payment Order of #PAY-QJZV956664",
 "datetime": "2020-01-01T13:02:00+09:00"
 },
 "code": {
 "id": "000000002563",
 "type": "3",
 "status": "1",
 "currency": "JPY",
 "amount": 650000
 }
 }
}

{
 "messageId": "89817674-daOO-4883",
 "returnCode": "400",
 "returnReason": "Error Message Here",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
}

DESCRIPTION

HSBC Omni Collect will return the latest transaction status according to the transaction reference number
Merchant provides.

Authorization
required
in header

BASIC [Base64-encoded Credential]

REQUEST PARAMETERS

Payment Status Enquiry
Payments

GET /payment/transaction/{txnRef}

x-hsbc-client-id
required
in header

[Client ID]

x-hsbc-client-secret
required
in header

[Client Secret]

x-hsbc-msg-encrypt-id
required
in header

[Merchant ID]+[JWS ID]+[JWE ID]

Content-Type
required
in header

application/json

txnRef: string
required

in path

Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

200 OK
enquiryRespModel

Successful operation.

Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

400 Bad Request
commonRespObj

Missing or invalid Parameters.

403 Forbidden Authorization credentials are missing or invalid.

404 Not Found Empty resource/resource not found.

500 Internal Server Error The request failed due to an internal error.

RESPONSES

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",

 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful"
 },
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "process_id": "ee5b902a153f104281f4b81c5ce8216b",
 "process_pass": "f1973eef815a6e1541b356ab06e2478c",
 "plan_id": "PLN-123e4567-e89b-12d3-a456-426614174000"
 },
 "payments": [
 {
 "id": "000014640567",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "description": "Payment Order of #PAY-QJZV956664"
 }
],
 "refunds": [
 {
 "id": "RFD-DFCV112233",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "create_datetime": "2020-01-01T13:02:00+09:00"
 }
],
 "code": {
 "id": "000000002563",
 "type": "3",
 "status": "1",
 "currency": "JPY",
 "amount": 650000
 },
 "links": [
 {
 "href": "/plan/@id",
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "rel": "plan",
 "method": "GET"
 }
]
 }
}

{
 "messageId": "89817674-daOO-4883",
 "returnCode": "400",
 "returnReason": "Error Message Here",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
}

DESCRIPTION

This API is used to send a refund request for a previously settled transaction. It supports both credit card and code
payment.

Authorization
required
in header

BASIC [Base64-encoded Credential]

x-hsbc-client-id
required
in header

[Client ID]

x-hsbc-client-secret
required
in header

[Client Secret]

x-hsbc-msg-encrypt-id
required
in header

[Merchant ID]+[JWS ID]+[JWE ID]

Content-Type
required
in header

application/json

refundReqtModel Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

REQUEST PARAMETERS

REQUEST BODY

Refund
Payments

POST /payment/refund

{
 "txnRef": "PAY-QJZV956664",
 "refund_id": "RFD-DFCV112233"
}

200 OK
refundRespModel

Successful operation.

Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

400 Bad Request
commonRespObj

Missing or invalid Parameters.

403 Forbidden Authorization credentials are missing or invalid.

404 Not Found Empty resource/resource not found.

500 Internal Server Error The request failed due to an internal error.

RESPONSES

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful"
 },
 "transaction": {
 "txnRef": "PAY-QJZV956664"
 },
 "refund": {
 "id": "RFD-DFCV112233",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "create_datetime": "2020-01-01T13:02:00+09:00"
 },

 "code": {
 "id": "000000002563",
 "type": "3",
 "status": "1",
 "currency": "JPY",
 "amount": 650000
 }
 }
}

{
 "messageId": "89817674-daOO-4883",
 "returnCode": "400",
 "returnReason": "Error Message Here",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
}

DESCRIPTION

Once Omni Collect receives a payment or refund request, subsequent payment status change or update will be
returned to Merchant by asynchronous callback until the status is reached to its final state.

Operation Intermediate State Final State

Credit Card
Payment

n/a "payment": {"resp_code": "OK"}

Credit Card
Refund

n/a "refund": {"resp_code": "OK"}

Code
Payment

"code": {"status": "1"}

= Paying
"code": {"status": "2"}

= Paid

Code Refund
"code": {"status": "3"}

= Refunding
"code": {"status": "4"}

= Refunded

Callback Status Notification
Payments

POST /<Callback_URL_1>

Content-Type: string
required
in header

text/plain

statusRtnReqtModel Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

REQUEST PARAMETERS

REQUEST BODY

{
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "process_id": "ee5b902a153f104281f4b81c5ce8216b",
 "process_pass": "f1973eef815a6e1541b356ab06e2478c",
 "plan_id": "PLN-123e4567-e89b-12d3-a456-426614174000"
 },
 "merchant": {
 "merId": "42298549900001"
 },
 "payment": {
 "id": "000014640567",
 "resp_code": "OK",
 "approvalNo": "0003000",

Implementation
This is a Callback API. HSBC will trigger this API call and defines the interface with OpenAPI standard.
Merchant is required to provide implementation.

!

Retry Mechanism
If no success response is received, up to 4 retries will be triggered in every 2 minutes. Maximum 5 calls
including the 1st attempt.

!

Endpoint Definition
Field notificationUrl from Payment Page Redirect API will be used as URL endpoint of the
corresponding transaction.

!

Exception Handling
Only success case will be returned. Merchant can submit a Payment Status Enquiry API request if found no
acknowledge message returned after a certain period of time.

!

Create an Instalment or Recurring Payment through a Plan. It acts as a reusable template and contains details of

Plans

 "amount": 100000,
 "description": "Payment Order of #PAY-QJZV956664"
 },
 "refund": {
 "id": "RFD-DFCV112233",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "create_datetime": "2020-01-01T13:02:00+09:00"
 },
 "code": {
 "id": "000000002563",
 "type": "3",
 "status": "1",
 "currency": "JPY",
 "amount": 650000
 },
 "udfs": [
 {
 "definition": "Product Image in Base64 format",
 "value": "iVBORw0KGgoAAAANSUhEU..."
 },
 {
 "definition": "Special Notes from Customer",
 "value": "Customer is a non-smoker"
 }
]
}

200 OK
statusRtnRespModel

Successful operation.

RESPONSES

{
 "status": "SUCCESS"
}

the billing cycle. Depending upon your business, you can create multiple plans with different billing cycles.

Once a plan is created, submit the Plan ID in Payment Page Redirect API.

DESCRIPTION

Create an instalment or recurring payment plan.

Authorization
required
in header

BASIC [Base64-encoded Credential]

x-hsbc-client-id
required
in header

[Client ID]

x-hsbc-client-secret
required
in header

[Client Secret]

x-hsbc-msg-encrypt-id
required
in header

[Merchant ID]+[JWS ID]+[JWE ID]

Content-Type
required
in header

application/json

createPlanReqtModel Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

REQUEST PARAMETERS

REQUEST BODY

Create Plan
Plans

POST /plan

{
 "type": "I",
 "description": "Monthly Installment Plan #1",
 "total_count": 12
}

200 OK
createPlanRespModel

Successful operation.

Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

400 Bad Request
commonRespObj

Missing or invalid Parameters.

403 Forbidden Authorization credentials are missing or invalid.

404 Not Found Empty resource/resource not found.

500 Internal Server Error The request failed due to an internal error.

RESPONSES

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful"
 },
 "plan": {
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "type": "I",
 "description": "Monthly Installment Plan #1",
 "total_count": 12,
 "create_date": "2020-01-01T13:02:00+09:00"
 },
 "links": [
 {

 "href": "/plan/@id",
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "rel": "self",
 "method": "GET"
 }
]
 }
}

{
 "messageId": "89817674-daOO-4883",
 "returnCode": "400",
 "returnReason": "Error Message Here",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
}

DESCRIPTION

Use this endpoint to fetch all plans.

Authorization
required
in header

BASIC [Base64-encoded Credential]

x-hsbc-client-id
required
in header

[Client ID]

x-hsbc-client-secret
required
in header

[Client Secret]

x-hsbc-msg-encrypt-id [Merchant ID]+[JWS ID]+[JWE ID]

REQUEST PARAMETERS

Retrieve All Plans
Plans

GET /plan

required
in header

Content-Type
required
in header

application/json

200 OK
getPlanRespModel

Successful operation.

Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

400 Bad Request
commonRespObj

Missing or invalid Parameters.

403 Forbidden Authorization credentials are missing or invalid.

404 Not Found Empty resource/resource not found.

500 Internal Server Error The request failed due to an internal error.

RESPONSES

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful",
 "no_of_record": 99,
 "no_of_page": 1
 },
 "plans": [
 {
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "type": "I",
 "description": "Monthly Installment Plan #1",
 "total_count": 12,
 "create_date": "2020-01-01T13:02:00+09:00"
 }

]
 }
}

{
 "messageId": "89817674-daOO-4883",
 "returnCode": "400",
 "returnReason": "Error Message Here",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
}

DESCRIPTION

Use this endpoint to fetch details of a plan by its ID.

Authorization
required
in header

BASIC [Base64-encoded Credential]

x-hsbc-client-id
required
in header

[Client ID]

x-hsbc-client-secret
required
in header

[Client Secret]

x-hsbc-msg-encrypt-id
required
in header

[Merchant ID]+[JWS ID]+[JWE ID]

REQUEST PARAMETERS

Retrieve Plan by Plan ID
Plans

GET /plan/{plan_id}

Content-Type
required
in header

application/json

plan_id: string
required

in path

Data Encryption is enforced.

200 OK
getPlanRespModel

Successful operation.

Data Encryption is enforced. API Schema intends to demonstrate the
skeleton of the message payload only.

400 Bad Request
commonRespObj

Missing or invalid Parameters.

403 Forbidden Authorization credentials are missing or invalid.

404 Not Found Empty resource/resource not found.

500 Internal Server Error The request failed due to an internal error.

RESPONSES

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful",
 "no_of_record": 99,
 "no_of_page": 1
 },
 "plans": [
 {
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "type": "I",
 "description": "Monthly Installment Plan #1",
 "total_count": 12,
 "create_date": "2020-01-01T13:02:00+09:00"

Schema Definitions

 }
]
 }
}

{
 "messageId": "89817674-daOO-4883",
 "returnCode": "400",
 "returnReason": "Error Message Here",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
}

PROPERTIES

messageId: string range: (up to 36 chars) required

System generated unique message ID only for HSBC internal reference use

returnCode: string range: (up to 3 chars) required

System Return Code.

This checking is on API Operational level, in other words, it checks upon Authorization, Connectivity and JSON
Message Structure.

Possible
Value

Definition

200 Successful operation

400 Bad Request (With detail message in field returnReason)

500

Internal Error.

Important Notices:
If any tier comes before the API Cloud Foundry is unavailable, such as the API Gateway, there will be no json
respond message returned.

commonRespObj: object

Furthermore, the respond message of 500 will be ignored by some common HTTP libraries, in such case, the
respond message body can be considered as a hint for troubleshooting during development and testing phase.

returnReason: string range: (up to 200 chars) required

Corresponding Text message of returnCode

Corr.
Return
Code

Return Message Sample Definition

200 Successful operation

A successful API operation in terms of Authorization, Connectivity and valid
JSON Message Structure.

Any checking failure on Business Logic level will be still considered a
successful API operation yet the Business Logic checking result will be
returned in response object.

400
Client ID - Merchant ID mapping is not
correct/updated!

The binding of Client ID, Merchant ID and Merchant Public Certificate is
incorrect or not up-to-date.

400
object has missing required
properties field name

Fail to pass JSON Field Mandatory Check.

400
instance type data type does not
match any allowed primitive type

Fail to pass JSON Field Type Check.

400 string field value is too long Fail to pass JSON Field Max Length Check

400
instance failed to match at least one
required schema among no. of

conditional field

Fail to pass JSON Conditional Field Check.

500
java.net.ConnectException:
Connection refused: connect

Notices: Message can be varied depended on the downstream systems
which return this message. Yet, all reasons can be concluded into Internal
Error or System Unavailable.

sentTime: string range: (up to 27 chars) required

Time of request received by HSBC system from client, only for HSBC internal reference use

responseTime: string range: (up to 27 chars) required

Time of HSBC system provides response to client, only for HSBC internal reference use

{
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",

 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
}

PROPERTIES

product_name: string range: (up to 200 chars) required

Product Item Name / Description

product_id: string range: (up to 50 chars) required

Product Number / ID

unitAmt: integer range: 100 ≤ x ≤ 999999999 required

Unit Amount of each item

unit: integer range: 1 ≤ x ≤ 9999 required

No. of Unit

vat: integer range: 0 ≤ x ≤ 999999999 required

Total VAT Tax Amount for all units

subAmt: integer range: 100 ≤ x ≤ 999999999 required

The Sum of one particular item with mulitple orders plus VAT. For example: unitAmt x unit + vat = subAmt

{
 "product_name": "Product Item 1",
 "product_id": "A",
 "unitAmt": 9000,
 "unit": 1,

itemsObj: object

NOTICE: Do not use comma or dot. For example, value 1250000 means 12,500.00!

NOTICE: Do not use comma or dot. For example, value 1250000 means 12,500.00!

NOTICE: Do not use comma or dot. For example, value 1250000 means 12,500.00!

 "vat": 1000,
 "subAmt": 10000
}

PROPERTIES

definition: string range: (up to 1024 chars) optional

Merchant Defined Definition

value: string range: (up to 2048 chars) optional

Merchant Defined Value

{
 "definition": "Special Notes from Customer",
 "value": "Customer is a non-smoker"
}

udfsObj: object

NOTICE: The sequence of this field inside the udfs array object you define in the request message of one
particular transaction will be maintained the same as it is returned in the response message of other APIs.

!

PROPERTIES

transaction: pay_rqt_txn_Obj required

system: pay_rqt_system_Obj required

payment: pay_rqt_payment_Obj required

items: Array< itemsObj > range: (up to 100 objects) required

Array of Product Descriptions in the basket

payLinkReqtModel: object

udfs: Array< udfsObj > range: (up to 50 objects) optional

Array of User Defined Fields

{
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "plan_id": "PLN-123e4567-e89b-12d3-a456-426614174000"
 },
 "system": {
 "redirectUrl": "https://www.example.com/redirect",
 "notificationUrl": "https://www.example.com/notification"
 },
 "payment": {
 "country": "JP",
 "amount": 10000,
 "description": "Payment Order of #PAY-QJZV956664"
 },
 "items": [
 {
 "product_name": "Product Item 1",
 "product_id": "A",
 "unitAmt": 9000,
 "unit": 1,
 "vat": 1000,
 "subAmt": 10000
 }
],
 "udfs": [
 {
 "definition": "Product Image in Base64 format",
 "value": "iVBORw0KGgoAAAANSUhEU..."
 },
 {
 "definition": "Special Notes from Customer",
 "value": "Customer is a non-smoker"
 }
]
}

PROPERTIES

txnRef: string range: (up to 100 chars) required

Unique ID referred to a specific transaction

pay_rqt_txn_Obj: object

Merchant is required to generate a unique ID for each transaction in alphanumeric format, duplicated ID will be
rejected.

tenant_id: object required

Tenant ID. Given by HSBC during Merchant Profile creation.

plan_id: string range: (up to 100 chars) optional

Input Corresponding Plan ID to associate a installment/recurring payment

{
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "plan_id": "PLN-123e4567-e89b-12d3-a456-426614174000"
}

PROPERTIES

redirectUrl: string range: (up to 500 chars) required

Define URL endpoint for redirecting back to merchant's site after payment

notificationUrl: string range: (up to 500 chars) required

Define URL endpoint for receiving status update notification (server-to-server) from HSBC after payment/refund
request is completed.

{
 "redirectUrl": "https://www.example.com/redirect",
 "notificationUrl": "https://www.example.com/notification"
}

pay_rqt_system_Obj: object

PROPERTIES

country: string enum: [JP] range: (up to 2 chars) required

Country Code (Format: ISO alpha-2)

Possible Value Definition

JP Japan

amount: integer range: 100 ≤ x ≤ 999999999 required

Payment Amount

description: string range: (up to 200 chars) optional

Payment Description

{
 "country": "JP",
 "amount": 10000,
 "description": "Payment Order of #PAY-QJZV956664"
}

pay_rqt_payment_Obj: object

NOTICE: Amount value must include 2 decimal places due to the system default setting for all currencies.
Furthermore, do not use any comma or dot. For instance, value 150000 means 1,500.00 yen.

!

PROPERTIES

api_gw: commonRespObj required

response: object required

PROPERTIES

payLinkRespModel: object

transaction: pay_rpn_txn_Obj required

system: pay_rpn_system_Obj required

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "transaction": {
 "txnRef": "PAY-QJZV956664"
 },
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful",
 "sysDatetime": "2020-01-01T13:00:00+09:00",
 "redirectLink": "<Encoded_Redirect_Submit_Form>"
 }
 }
}

PROPERTIES

txnRef: string range: (up to 100 chars) required

Returning back Transaction Reference

{
 "txnRef": "PAY-QJZV956664"
}

pay_rpn_txn_Obj: object

PROPERTIES

sysCode: string range: (up to 6 chars) required

System Return Code

Possible Value Definition

000000 Request Successful

800110 Invalid Calculation Found in Product Sub-Amount

800120 Invalid Calculation Found in Order Total Amount

900030 Duplicate Transaction Reference

999999 System Error

sysMsg: string range: (up to 128 chars) required

Corresponding Text Message of System Return Code

sysDatetime: string range: (up to 25 chars) required

Time of sending out this request / response

Server system time. A GMT+9 timezone information is appended to the end of the timestamp to indicate this
time is a Japan local time. Format: yyyy-MM-dd'T'HH:mm:ss±hh:mm

redirectLink: string range: (up to 5120 chars) optional

Encoded Redirect Link with all form submit parameters. Return only for successful request.

{
 "sysCode": "000000",
 "sysMsg": "Request Successful",
 "sysDatetime": "2020-01-01T13:00:00+09:00",
 "redirectLink": "<Encoded_Redirect_Submit_Form>"
}

pay_rpn_system_Obj: object

PROPERTIES

transaction: code_rqt_txn_Obj required

system: code_rqt_system_Obj required

payment: code_rqt_payment_Obj required

items: Array< itemsObj > required

Array of Product Descriptions in the basket

udfs: Array< udfsObj > optional

Array of User Defined Fields

{
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001"
 },
 "system": {
 "notificationUrl": "https://www.example.com/notification",
 "qr_str": "<QR_Code_String>"
 },
 "payment": {
 "country": "JP",
 "amount": 10000,
 "description": "Payment Order of #PAY-QJZV956664"
 },
 "items": [
 {
 "product_name": "Product Item 1",
 "product_id": "A",
 "unitAmt": 9000,
 "unit": 1,
 "vat": 1000,
 "subAmt": 10000
 }
],
 "udfs": [
 {
 "definition": "Product Image in Base64 format",
 "value": "iVBORw0KGgoAAAANSUhEU..."
 },
 {
 "definition": "Special Notes from Customer",
 "value": "Customer is a non-smoker"
 }
]
}

codeReqtModel: object

PROPERTIES

txnRef: string range: (up to 100 chars) required

Unique ID referred to a specific transaction

Merchant is required to generate a unique ID for each transaction in alphanumeric format, duplicated ID will be
rejected.

tenant_id: string range: (up to 4 chars) required

Tenant ID. Given by HSBC during Merchant Profile creation.

{
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001"
}

code_rqt_txn_Obj: object

PROPERTIES

notificationUrl: string range: (up to 500 chars) required

Define URL endpoint for receiving status update notification (server-to-server) from HSBC after payment/refund
request is completed.

qr_str: string range: (up to 128 chars) required

Decode the QR Code image into a string

{
 "notificationUrl": "https://www.example.com/notification",
 "qr_str": "<QR_Code_String>"
}

code_rqt_system_Obj: object

PROPERTIES

country: string enum: [JP] range: (up to 2 chars) required

Country Code (Format: ISO alpha-2)

Possible Value Definition

JP Japan

amount: integer range: 100 ≤ x ≤ 999999999 required

Payment Amount

description: string range: (up to 200 chars) optional

Payment Description

{
 "country": "JP",
 "amount": 10000,
 "description": "Payment Order of #PAY-QJZV956664"
}

code_rqt_payment_Obj: object

NOTICE: Amount value must include 2 decimal places due to the system default setting for all currencies.
Furthermore, do not use any comma or dot. For instance, value 150000 means 1,500.00 yen.

!

codeRespModel: object

PROPERTIES

api_gw: commonRespObj required

response: object required

PROPERTIES

system: code_rpn_system_Obj required

transaction: code_rpn_txn_Obj required

payment: code_rpn_pay_Obj optional

Related information of Payment Request (with Payment Gateway). Return only for successful payment request.

code: code_Obj optional

Related information of Code Transaction (with Code Companies). Return only for successful payment request

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful"
 },
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "process_id": "ee5b902a153f104281f4b81c5ce8216b",
 "process_pass": "f1973eef815a6e1541b356ab06e2478c",
 "error_code": "BARCODE_ERROR",
 "error_msg": "正しいバーコードをスキャンしてください。"
 },
 "payment": {
 "id": "000014640567",
 "resp_code": "OK",
 "amount": 650000,
 "description": "Payment Order of #PAY-QJZV956664",
 "datetime": "2020-01-01T13:02:00+09:00"
 },
 "code": {
 "id": "000000002563",
 "type": "3",
 "status": "1",
 "currency": "JPY",
 "amount": 650000
 }
 }
}

PROPERTIES

sysCode: string range: (up to 6 chars) required

System Return Code

Possible Value Definition

000000 Request Successful

800110 Invalid Calculation Found in Product Sub-Amount

800120 Invalid Calculation Found in Order Total Amount

900030 Duplicate Transaction Reference

900000 Transaction is Failed

999999 System Error

sysMsg: string range: (up to 128 chars) required

Corresponding Text Message of System Return Code

{
 "sysCode": "000000",
 "sysMsg": "Request Successful"
}

code_rpn_system_Obj: object

PROPERTIES

code_rpn_txn_Obj: object

txnRef: string range: (up to 100 chars) required

Returning Transaction Reference

tenant_id: string range: (up to 4 chars) required

Returning Tenant ID

process_id: string range: (up to 32 chars) optional

Returning Process ID for a successful request. For checking transactions in Merchant Portal.

process_pass: string range: (up to 32 chars) optional

Returning Process Password for a successful request. For checking transactions in Merchant Portal.

error_code: string range: (up to 32 chars) optional

Error Code. Return only if any issue happens

error_msg: string range: (up to 128 chars) optional

Error Message. Return only if any issue happens

{
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "process_id": "ee5b902a153f104281f4b81c5ce8216b",
 "process_pass": "f1973eef815a6e1541b356ab06e2478c",
 "error_code": "BARCODE_ERROR",
 "error_msg": "正しいバーコードをスキャンしてください。"
}

PROPERTIES

id: string range: (up to 12 chars) required

The identifier of the corresponding Code Payment Request made via the payment gateway.

resp_code: string range: (up to 5 chars) required

Respond Code of the corresponding Code Payment Request.

code_rpn_pay_Obj: object

NOTICE:
Respond Code is an operational status of the request returned by the Payment Gateway. OK means the
request is accepted and will be processed by Payment Gateway, other then OK means fail and please
contact HSBC support.

!

amount: integer range: 100 ≤ x ≤ 999999999 required

Payment Amount

description: string range: (up to 200 chars) optional

Payment Description. Return if it has been defined in the request.

datetime: string range: (up to 25 chars) required

Returning Transaction time for the successful Code Payment Request

Bank system local time. A GMT+9 timezone information is appended to the end of the timestamp to indicate this
time is a Japan local time. Format: yyyy-MM-dd'T'HH:mm:ss±hh:mm

{
 "id": "000014640567",
 "resp_code": "OK",
 "amount": 650000,
 "description": "Payment Order of #PAY-QJZV956664",
 "datetime": "2020-01-01T13:02:00+09:00"
}

NOTICE: Amount value must include 2 decimal places due to the system default setting for all currencies.
Furthermore, do not use any comma or dot. For instance, value 150000 means 1,500.00 yen.

!

PROPERTIES

id: string range: (up to 32 chars) required

The identifier of the corresponding Code Transaction made via the Code Payment Gateway.

type: string range: (up to 2 chars) required

Types of Code

Possible Value
Definition
(Code Brands / Companies)

Refund Deadline
(counting from the day after
the payment completion date)

code_Obj: object

0 WeChat Pay 89 days

1 Alipay 89 days

3 楽天ペイ 9 days

5 PayPay 14 days

6 メルペイ 365 days

7 d 払い 90 days

8 LINE Pay 30 days

9 au PAY 90 days

E J-Coin Pay 365 days

Z 銀聯 30 days

status: string range: (up to 2 chars) required

Code Transaction Status

Possible Value Definition

1 Paying

2 Paid

3 Refunding

4 Refunded

6 Cancelled

99 System Error

currency: string enum: [JPY] range: (up to 10 chars) required

Code Payment Currency

amount: integer range: 100 ≤ x ≤ 999999999 required

Code Payment Amount

NOTICE: Amount value must include 2 decimal places due to the system default setting for all currencies.
Furthermore, do not use any comma or dot. For instance, value 150000 means 1,500.00 yen.

!

{
 "id": "000000002563",
 "type": "3",
 "status": "1",
 "currency": "JPY",
 "amount": 650000
}

PROPERTIES

api_gw: commonRespObj required

response: object required

PROPERTIES

system: enq_rpn_sys_Obj required

transaction: enq_rpn_txn_Obj required

payments: Array< payment_rpn_Obj > optional

Return if the request is successful

refunds: Array< refund_rpn_Obj > optional

Return if refund has been requested to the corresponding payment

code: code_Obj optional

Return if it is a code payment

links: Array< halLinkObj > optional

Collection of related resources

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },

enquiryRespModel: object

 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful"
 },
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "process_id": "ee5b902a153f104281f4b81c5ce8216b",
 "process_pass": "f1973eef815a6e1541b356ab06e2478c",
 "plan_id": "PLN-123e4567-e89b-12d3-a456-426614174000"
 },
 "payments": [
 {
 "id": "000014640567",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "description": "Payment Order of #PAY-QJZV956664"
 }
],
 "refunds": [
 {
 "id": "RFD-DFCV112233",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "create_datetime": "2020-01-01T13:02:00+09:00"
 }
],
 "code": {
 "id": "000000002563",
 "type": "3",
 "status": "1",
 "currency": "JPY",
 "amount": 650000
 },
 "links": [
 {
 "href": "/plan/@id",
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "rel": "plan",
 "method": "GET"
 }
]
 }
}

PROPERTIES

sysCode: string range: (up to 6 chars) required

enq_rpn_sys_Obj: object

System Return Code

Possible Value Definition

000000 Request Successful

100010 Transaction is Pending

900010 Transaction Record Not Found

900000 Transaction is Failed

999999 System Error

sysMsg: string range: (up to 128 chars) required

System Return Status. This is the corresponding message of System Return Code.

{
 "sysCode": "000000",
 "sysMsg": "Request Successful"
}

PROPERTIES

txnRef: string range: (up to 100 chars) required

Returning Transaction Reference

tenant_id: string range: (up to 4 chars) optional

Returning Tenant ID for a successful request

process_id: string range: (up to 32 chars) optional

Returning Process ID for a successful request. For checking transactions in Merchant Portal.

process_pass: string range: (up to 32 chars) optional

Returning Process Password for a successful request. For checking transactions in Merchant Portal.

plan_id: string range: (up to 100 chars) optional

Returning Plan ID if the request associates a plan

enq_rpn_txn_Obj: object

{
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "process_id": "ee5b902a153f104281f4b81c5ce8216b",
 "process_pass": "f1973eef815a6e1541b356ab06e2478c",
 "plan_id": "PLN-123e4567-e89b-12d3-a456-426614174000"
}

PROPERTIES

id: string range: (up to 20 chars) required

The identifier of the corresponding Payment Request made via the payment gateway.

resp_code: string range: (up to 5 chars) required

Respond Code of the corresponding Payment Request.

approvalNo: string range: (up to 7 chars) optional

Returning Transaction Approval Number, only for Credit Card Payment

amount: integer range: 100 ≤ x ≤ 999999999 required

Payment Amount

description: string range: (up to 200 chars) optional

Payment Description. Return if it has been defined in the request.

payment_rpn_Obj: object

NOTICE:
Respond Code is an operational status of the request returned by the Payment Gateway. OK means the
request is accepted and will be processed by Payment Gateway, other then OK means fail and please
contact HSBC support.

!

NOTICE: Amount value must include 2 decimal places due to the system default setting for all currencies.
Furthermore, do not use any comma or dot. For instance, value 150000 means 1,500.00 yen.

!

{
 "id": "000014640567",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "description": "Payment Order of #PAY-QJZV956664"
}

PROPERTIES

id: string range: (up to 100 chars) required

The identifier of the corresponding Refund Request made via the payment gateway.

resp_code: string range: (up to 5 chars) required

Respond Code of the corresponding Refund Request.

approvalNo: string range: (up to 7 chars) optional

Returning Refund Approval Number, only for Credit Card Payment

amount: integer range: 100 ≤ x ≤ 999999999 required

Refund Amount

create_datetime: string range: (up to 25 chars) optional

Returning Transaction time for the successful Refund Request

Bank system local time. A GMT+9 timezone information is appended to the end of the timestamp to indicate this
time is a Japan local time. Format: yyyy-MM-dd'T'HH:mm:ss±hh:mm

refund_rpn_Obj: object

NOTICE:
Respond Code is an operational status of the request returned by the Payment Gateway. OK means the
request is accepted and will be processed by Payment Gateway, other then OK means fail and please
contact HSBC support.

!

NOTICE: Amount value must include 2 decimal places due to the system default setting for all currencies.
Furthermore, do not use any comma or dot. For instance, value 150000 means 1,500.00 yen.

!

{
 "id": "RFD-DFCV112233",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "create_datetime": "2020-01-01T13:02:00+09:00"
}

PROPERTIES

txnRef: string range: (up to 100 chars) required

Merchant to pass the original Transaction Reference

refund_id: string range: (up to 100 chars) optional

Merchant can optionally assign an unique Refund Reference Number for every refund transaction. The number will
then be returned in response message "refund": {"id": ""} , otherwise the id will be assigned by payment
gateway.

{
 "txnRef": "PAY-QJZV956664",
 "refund_id": "RFD-DFCV112233"
}

refundReqtModel: object

PROPERTIES

api_gw: commonRespObj required

refundRespModel: object

response: object required

PROPERTIES

system: refund_rpn_sys_Obj required

transaction: refund_rpn_txn_Obj required

refund: refund_rpn_Obj required

code: code_Obj optional

Return if it is a code payment

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful"
 },
 "transaction": {
 "txnRef": "PAY-QJZV956664"
 },
 "refund": {
 "id": "RFD-DFCV112233",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "create_datetime": "2020-01-01T13:02:00+09:00"
 },
 "code": {
 "id": "000000002563",
 "type": "3",
 "status": "1",
 "currency": "JPY",
 "amount": 650000
 }
 }
}

refund_rpn_sys_Obj: object

PROPERTIES

sysCode: string range: (up to 6 chars) required

System Return Code

Possible Value Definition

000000 Request Successful

900000 Transaction is Failed

900010 Transaction Record Not Found

900030 Duplicate Refund Transaction Reference

999999 System Error

sysMsg: string range: (up to 128 chars) required

System Return Status

{
 "sysCode": "000000",
 "sysMsg": "Request Successful"
}

PROPERTIES

txnRef: string range: (up to 100 chars) required

Return Transaction Reference

{
 "txnRef": "PAY-QJZV956664"
}

refund_rpn_txn_Obj: object

PROPERTIES

transaction: enq_rpn_txn_Obj required

merchant: merchant_Obj required

payment: payment_rpn_Obj required

refund: refund_rpn_Obj optional

Return if it is a refund request

code: code_Obj optional

Return if it is a code payment

udfs: Array< udfsObj > range: (up to 50 objects) optional

Array of User Defined Fields

{
 "transaction": {
 "txnRef": "PAY-QJZV956664",
 "tenant_id": "0001",
 "process_id": "ee5b902a153f104281f4b81c5ce8216b",
 "process_pass": "f1973eef815a6e1541b356ab06e2478c",
 "plan_id": "PLN-123e4567-e89b-12d3-a456-426614174000"
 },
 "merchant": {
 "merId": "42298549900001"
 },
 "payment": {
 "id": "000014640567",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "description": "Payment Order of #PAY-QJZV956664"
 },
 "refund": {
 "id": "RFD-DFCV112233",
 "resp_code": "OK",
 "approvalNo": "0003000",
 "amount": 100000,
 "create_datetime": "2020-01-01T13:02:00+09:00"
 },
 "code": {
 "id": "000000002563",
 "type": "3",

statusRtnReqtModel: object

 "status": "1",
 "currency": "JPY",
 "amount": 650000
 },
 "udfs": [
 {
 "definition": "Product Image in Base64 format",
 "value": "iVBORw0KGgoAAAANSUhEU..."
 },
 {
 "definition": "Special Notes from Customer",
 "value": "Customer is a non-smoker"
 }
]
}

PROPERTIES

merId: string range: (up to 10 chars) required

Returning Merchant ID

{
 "merId": "42298549900001"
}

merchant_Obj: object

PROPERTIES

status: string range: (up to 30 chars) required

Return Message

statusRtnRespModel: object

{
 "status": "SUCCESS"
}

PROPERTIES

type: string enum: [R, I] range: (up to 1 chars) required

Plan type

Possible
Value

Definition Remark

R Revolving
Once a Revolving Payment is initiated, the payment will keep rolling until a Cancel/Refund
Operation is submitted.

I Installment The total number of installment must be defined.

description: string range: (up to 100 chars) required

Description

total_count: integer range: 2 ≤ x ≤ 84 conditional

Installment Total Count. Required if {"type": "I"}

{
 "type": "I",
 "description": "Monthly Installment Plan #1",
 "total_count": 12
}

createPlanReqtModel: object

PROPERTIES

api_gw: commonRespObj required

response: object required

PROPERTIES

system: systemPostObj required

plan: planObj optional

Return if the request is successful

links: Array< halLinkObj > optional

Collection of related resources

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful"
 },
 "plan": {
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "type": "I",
 "description": "Monthly Installment Plan #1",
 "total_count": 12,
 "create_date": "2020-01-01T13:02:00+09:00"
 },
 "links": [
 {
 "href": "/plan/@id",
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "rel": "self",
 "method": "GET"
 }
]
 }
}

createPlanRespModel: object

PROPERTIES

sysCode: string range: (up to 6 chars) required

System Return Code

Possible Value Definition

000000 Request Successful

900000 Request Failed

999999 System Error

sysMsg: string range: (up to 128 chars) required

Corresponding Text Message of System Return Code

{
 "sysCode": "000000",
 "sysMsg": "Request Successful"
}

systemPostObj: object

PROPERTIES

sysCode: string range: (up to 6 chars) required

System Return Code

Possible Value Definition

000000 Request Successful

900000 Request Failed

systemGetObj: object

900010 Record Not Found

999999 System Error

sysMsg: string range: (up to 128 chars) required

Corresponding Text Message of System Return Code

no_of_record: integer range: 1 ≤ x ≤ 999 required

Total No. of Record(s)

no_of_page: integer range: 1 ≤ x ≤ 999 required

Total No. of Page(s)

{
 "sysCode": "000000",
 "sysMsg": "Request Successful",
 "no_of_record": 99,
 "no_of_page": 1
}

PROPERTIES

href: string range: (up to 100 chars) required

Hypertext Application Language (HAL) - URL Endpoint of the related resource

id: string range: (up to 100 chars) required

Hypertext Application Language (HAL) - Entity ID of the related resource where it replaces the @id in the URI.

rel: string range: (up to 100 chars) required

Hypertext Application Language (HAL) - Related entity name

method: string range: (up to 100 chars) required

Hypertext Application Language (HAL) - HTTP Method of the related resource

halLinkObj: object

{
 "href": "XXXX",
 "id": "XXXX",
 "rel": "XXXX",
 "method": "XXXX"
}

PROPERTIES

id: string range: (up to 100 chars) required

Plan ID

type: string enum: [R, I] range: (up to 1 chars) required

Plan type

Possible
Value

Definition Remark

R Revolving
Once a Revolving Payment is initiated, the payment will keep rolling until a Cancel/Refund
Operation is submitted.

I Installment The total number of installment must be defined.

description: string range: (up to 100 chars) required

Description

total_count: integer range: 2 ≤ x ≤ 84 conditional

Installment Total Count. Required if {"type": "I"}

create_date: string range: (up to 25 chars) required

Creation date of this Plan

{
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "type": "I",
 "description": "Monthly Installment Plan #1",
 "total_count": 12,
 "create_date": "2020-01-01T13:02:00+09:00"

planObj: object

}

PROPERTIES

api_gw: commonRespObj required

response: object required

PROPERTIES

system: systemGetObj required

plans: Array< planObj > optional

Array of all Plan(s) previously created

{
 "api_gw": {
 "messageId": "89817674-daOO-4883",
 "returnCode": "200",
 "returnReason": "Successful operation",
 "sentTime": "2016-11-15T10:00:00.000Z",
 "responseTime": "2016-11-15T10:00:00.000Z"
 },
 "response": {
 "system": {
 "sysCode": "000000",
 "sysMsg": "Request Successful",
 "no_of_record": 99,
 "no_of_page": 1
 },
 "plans": [
 {
 "id": "PLN-123e4567-e89b-12d3-a456-426614174000",
 "type": "I",
 "description": "Monthly Installment Plan #1",
 "total_count": 12,
 "create_date": "2020-01-01T13:02:00+09:00"
 }
]
 }
}

getPlanRespModel: object

This section highlights the Lifecycle of cryptographic keys in the following steps:

1. Generate keys pair (Private Key and Public Key Certificate)
2. Optional: Export CSR (Certificate Signing Request) and get signed with CA (Certificate Authority)

3. Exchange Certificate with HSBC
4. Key Maintenance
5. Key Renewal Process

Command line tool Java Keytool™ is used in the demonstration. The tool can generate public key / private key
pairs and store them into a Java KeyStore. The Keytool executable is distributed with the Java SDK (or JRE)™,
so if you have an SDK installed you will also have the Keytool executable. Yet, Merchant is free to choose any
other tool to generate and manage keys, such as OpenSSL™.

Key Generation and Certificate Exchange with HSBC
1. Create a new keys pair (Private Key and Public Key Certificate) with a new or existing Keystore.

keytool -genkey
 -alias merchant_key_pair
 -keyalg RSA
 -keystore merchant_keystore.jks
 -keysize 2048
 -validity 3650
 -storepass <your keystore password>

-genkey - command to generate keys pair.
-alias - define the alias name (or unique identifier) of the keys pair stored inside the keystore.

Lifecycle of Cryptographic Keys

DO YOU KNOW?
In public key infrastructure (PKI) systems, a certificate signing request is a message sent from an
applicant to a certificate authority in order to apply for a digital identity certificate. It usually contains the
public key for which the certificate should be issued.

!

NOTICE:
Certificate Specification:

Certificate type: X.509 version 3

Signing algorithm: 2048-bit RSA

Hashing algorithm: SHA-256

!

-keyalg - key algorithm, it must be RSA regarding to HSBC standard. If RSA is taken, the default hashing
algorithm will be SHA-256 .
-keystore - file name of the keystore. If the file already exists in your system location, the key will be created
inside your existing keystore, otherwise, a new keystore with the defined name will be created.

-keysize - key size, it must be 2048 regarding to HSBC standard.
-validity - the validity period of the private key and its associated certificate. The unit is day , 3650 means
10 years.
-storepass - password of the keystore.

1.1. Provide Distinguished Name information after running the command:

Information required for CSR generation
--
What is your first and last name?
 [Unknown]: MERCHANT INFO
What is the name of your organizational unit?
 [Unknown]: MERCHANT INFO
What is the name of your organization?
 [Unknown]: MERCHANT INFO
What is the name of your City or Locality?
 [Unknown]: HK
What is the name of your State or Province?
 [Unknown]: HK
What is the two-letter country code for this unit?
 [Unknown]: HK
Is CN=XXX, OU=XXX, O=XXX, L=HK, ST=HK, C=HK correct? (type "yes" or "no")
 [no]: yes

Enter key password for <merchant_key_pair>
 (RETURN if same as keystore password):
Re-enter new password:

2. Optional: Export CSR and get signed with CA. This step can be skipped if Merchant decides to work with a
Self-Signed Certificate.

keytool -certreq
 -alias merchant_key_pair

DO YOU KNOW?
Keystore is a password-protected repository of keys and certificates. File with extension jks means
it is a Java Keystore which is originally supported and executable with Java™.

There are several keystore formats in the industry like PKCS12 with file extension p12 which is
executable with Microsoft Windows™, merchant can always pick the one most fit their application.

!

NOTICE: Private Key password and Keystore password can be the same or Merchant can set them
differently to be more secure.

!

 -keyalg RSA
 -file merchant_csr.csr
 -keystore merchant_keystore.jks

-certreq - command to generate and export CSR.
-alias - the name of the associated keys pair.
-keyalg - key algorithm, it must be RSA regarding to HSBC standard.
-file - file name of the CSR. This will be generated at the location where the command is run.
-keystore - specify the keystore which you are working on.

2.1. Select and purchase a plan at Certificate Authority and then submit the CSR accordingly. After a signed
Certificate is issued by CA, import the Certificate back to Merchant's keystore.

keytool -import
 -alias merchant_signed_cert_0001
 -trustcacerts -file CA_signed_cert.p7b
 -keystore merchant_keystore.jks

-import - command to import object into a specific keystore.
-alias - define the alias name (or unique identifier) of the signed Certificate.
-trustcacerts -file - specify the file name of the signed Certificate in Merchant's local file system.

-keystore - specify the keystore which you are working on.

3. Export Certificate and send to HSBC for key exchange.

keytool -export
 -alias merchant_key_pair
 -file merchant_cert_0001.cer
 -keystore merchant_keystore.jks

-export - command to export object from a specific keystore.
-alias - the name of the associated keys pair.

NOTICE: PKCS#7 is one of the common formats that contains certificates and has a file extension of
.p7b or .p7c . The certificate format may be varied depending on the policy of the issuing CA.

!

DO YOU KNOW:
A Certificate or Public Key Certificate is an electronic document that contains a public key and additional
information that prove the ownership and maintain integrity of the public key. This is essential for the
sender to ensure the key is not altered by any chance during delivery.

!

NOTICE: If Merchant associates the original keys pair merchant_key_pair , the exported Certificate is!

-file - specify the file name of the Certificate where the file will be exported to Merchant's local file system.

-keystore - specify the keystore which you are working on.

4. Import HSBC's Certificate into merchant's Keystore.

keytool -import
 -alias hsbc_cert_0002
 -file hsbc_cert_0002.cer
 -keystore merchant_keystore.jks

-import - command to import object into a specific keystore.
-alias - define the alias name of HSBC's Certificate in your keystore.
-file - specify the file name of HSBC's Certificate in Merchant's local file system.
-keystore - specify the keystore which you are working on.

5. Optional: List keystore objects. Merchant is suggested to verify that all required objects are properly
maintained. 2 - 3 entries should be found in your Java Keystore: (Entries may be varied if other key repository
format is used)

Alias name
Corresponding
Object

Remark

merchant_key_pair
Merchant's Private Key
Merchant's Public Certificate
(Self-Signed)

These two objects appear to be one entry in a JAVA
Keystore. Merchant can still export them separately
into two objects (files) on your local file system
depending on your application design.

merchant_signed_cert_0001
Merchant's Public Certificate
(CA-Signed)

Not exist if Merchant skips step #2

hsbc_cert_0002 HSBC's Public Certificate

keytool -list -v -keystore merchant_keystore.jks

Keystore type: JKS
Keystore provider: SUN

without CA-signed, and hence, Self-Signed. However, if Merchant associates the imported Certificate
merchant_signed_cert_0001 mentioned in step #2, the exported Certificate is CA-signed.

NOTICE: The default Certificate file encoding is binary. HSBC accepts both binary and base64
encoding. To export a printable base64 encoding file, please attach an extra parameter -rfc in the
command.
e.g. -file merchant_cert_0001.crt -rfc .

!

Your keystore contains 3 entries

Alias name: merchant_key_pair
Creation date: Jan 1, 2020
Entry type: PrivateKeyEntry

<Other Information>

Alias name: merchant_signed_cert_0001
Creation date: Jan 1, 2020
Entry type: trustedCertEntry

<Other Information>

Alias name: hsbc_cert_0002
Creation date: Jan 1, 2020
Entry type: trustedCertEntry

<Other Information>

Certificates and Keys Maintenance
Here are some recommendations to Merchant of how to properly maintain certificates and keys:

Component Storage Validity

Merchant's
Private Key

Private Key should be maintained and handled with
the most secure approach that a Merchant can apply.
The most common and yet secure enough approach
is:

key password - Do not save the password in plain
text or hard-coded in application. Recommend to
encrypt it by any Password Encryption Tools
key storage - Store inside password-protected key
repository, such as JKS or PKCS12 keystore.
Keystore password should also be encrypted.

No restriction on the Validity Period. However, if
Merchant suspects there is any chance that the key is
leaked or for any other security reason, a new Private
Key and its associated Public Key Certificate should
be generated.

Merchant's
Public Key
Certificate

Since Public Key Certificate is publicly distributed, a
comparative moderate secure storage approach is
acceptable. Merchant can store the physical file in any
system's file system or store all keys and certificates in

For a self-signed Certificate, the same condition has
been mentioned as above.

However, the validity period of a CA-signed Certificate
is depended on the purchase plan of the issuing CA.

one single key repository for a centralised key
management.

The most common standard is 1 to 2 years.

HSBC's
Public Key
Certificate

Same as the above

1 Year

NOTICE: Technically, the validity period is usually 1
Year plus 1 to 2 months more. The spare period is a
buffer for a merchant to switch a "to-be-expired"
Certificate to the new one during the Certificate
Renewal Process. More technical detail will be
covered in later section.

Certificates and Keys Renewal
Every Public Key Certificate has an expiration date and when either Merchant's or HSBC's Certificate is about to
expire, a key renewal process will be taken place. Please see the below Key Renewal Process Flow for your
reference:

SOME RULES YOU SHOULD KNOW:
Keys Repository: This is a make-up for demonstration purpose only.
Keys Name: Using a Key Name KeyID naming convention is for a simpler demonstration. The
suggested identifier of one key should be the alias name inside a key repository.
KeyID Value: HSBC uses naming convention 0001 , 0002 , 0003 ... n + 1 , when every time HSBC
certificate is renewed, the KeyID value will be n + 1 .
KeyID Binding: The binding between KeyID and corresponding Keys Pair in merchant's system can
make use of any key/value logic, such as Database table. In our example below, KeyID 000X binds to
Private Key v.000X and Public Certificate v.000X , etc.

Validity Date: All dates are make-up for demonstration purpose only.

!

Below is the technical flow showing how Certificates , Alias Names and KeyIDs work together during a
normal process or a key renewal process:

NOTICE: All examples above are about the Certificate Renewal of HSBC, whenever Merchant wants to renew
their Certificate, please switch your role and steps into HSBC's.

!

Click here to download Swagger 2.0 file in YAML format.

IMPORTANT NOTICE

This document is issued by The Hongkong and Shanghai Banking Corporation Limited, Hong Kong (“HSBC”).
HSBC does not warrant that the contents of this document are accurate, sufficient or relevant for the recipient’s
purposes and HSBC gives no undertaking and is under no obligation to provide the recipient with access to any
additional information or to update all or any part of the contents of this document or to correct any inaccuracies in
it which may become apparent. Receipt of this document in whole or in part shall not constitute an offer, invitation
or inducement to contract. The recipient is solely responsible for making its own independent appraisal of the
products, services and other content referred to in this document. This document should be read in its entirety and
should not be photocopied, reproduced, distributed or disclosed in whole or in part to any other person without the
prior written consent of the relevant HSBC group member. Copyright: HSBC Group 2019. ALL RIGHTS
RESERVED.

Download Swagger

Disclaimer

	Local Disk
	API Specification of HSBC Omni Collect in Japan| API Reference

